

    
      
          
            
  
Flor

Flor [https://github.com/ucbrise/flor] is a diagnostics and sharing system for the Machine Learning Lifecycle.
Flor [https://github.com/ucbrise/flor] transparently captures complete execution traces (CETs) and surfaces them as relational tables with minimal human guidance.
You can run SQL queries over CETs by annotating your code with log statements — after your code executes.
Run your ML code with confidence: you won’t forget to track something important.
When you need the value of some expression in your code, just click on it and give it a name, we’ll do ETL.
Ask your questions in SQL.

Flor [https://github.com/ucbrise/flor] is a work in progress.
You are welcome to try it now and give us feedback via Github Issues [https://github.com/ucbrise/flor/issues].
We’re working on making Flor run faster, without sacrificing completeness, transparency, or ease of use.


Installation

Flor requires Python 3.6 or higher.
Flor requires Anaconda.


	Run the command: pip install pyflor


	Run the command, following the instructions as prompted: pyflor_install






Step 1: Execute your code, generating a Complete Execution Trace

Below is the well-known scikit-learn Iris example.
We’ve modified this example to do a small hyper-parameter sweep over gamma,
a hyper-parameter for the Support Vector Classifier.

For what value of gamma do we get the best score?

To understand the motivation behind Flor, resist the urge to add print statements.
Flor will capture everything for you, we’ll extract it in a future step.

from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import train_test_split
import random

iris = datasets.load_iris()
X_tr, X_te, y_tr, y_te = train_test_split(iris.data,
                                          iris.target,
                                          test_size=0.15,
                                          random_state=random.randint(1,100))
for g in [0.1, 0.01, 0.001]:
    clf = svm.SVC(gamma=g, C=100.0)
    clf.fit(X_tr, y_tr)
    score = clf.score(X_te, y_te)

print('--- Job Finished ---')





Copy and paste the Iris example above and name it iris.py,
preferably in a new directory that you don’t mind Flor modifying.

From the directory you just created, containing iris.py, run:

flor python iris.py iris_demo





The command tells Flor to capture a Complete Execution Trace for python iris.py,
and to name this experiment iris_demo.

When the execution finishes, you can peek at the Complete Execution Trace (CET) at ~/.flor/iris_demo/log.json,
we show you this now as evidence that Flor captured the contents of the execution.

In the next steps, we’ll show you how Flor can transform that CET into a CSV table.



Step 2: Annotate your code, choosing and naming the expressions you want to extract from the CET

Want to know the value for the seed that we used in train_test_split?
Then, we annotate the expression that generated that value: random.randint(1,100).

Here is the syntax for a Flor Annotation:

GET("name_of_expression", e)





An annotation lets you choose which expressions in the code you care about,
and it gives you an opportunity to name them, so that there are no ambiguities.

Let’s annotate iris.py. We don’t want the annotations to modify the original file,
so let’s work on a copy of the file. Flor also needs some metadata, such as the origins of the file,
so we will call a special Flor command to copy the file and put the metadata at the top of the file.

flor cp iris.py iris_h.py





Now, iris_h.py is a copy of the file that you can annotate.
You should annotate this file next.

Below is an example annotated file:

#/Users/rogarcia/sandbox/iris.py
from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import train_test_split
import random

iris = datasets.load_iris()
X_tr, X_te, y_tr, y_te = train_test_split(iris.data,
                                          iris.target,
                                          test_size=GET("test_size", 0.15),
                                          random_state=GET("random_state", random.randint(1,100)))
for g in [0.1, 0.01, 0.001]:
    clf = svm.SVC(gamma=GET("gamma", g), C=GET("C", 100.0))
    clf.fit(X_tr, y_tr)
    score = GET("score", clf.score(X_te, y_te))

print('--- Job Finished ---')





There are 5 annotations in the example above.
Your annotated file should also contain a comment at the top with the path where iris.py was run.

The proper way to annotate your code is on a GUI: you simply highlight the expressions you want and give them a name.
Flor includes a PyCharm plugin that allows you to annotate your code more easily. You can find the plugin here [https://github.com/ucbrise/flor/tree/master/highlight_plugin/build/libs].
Documentation for the PyCharm plugin will follow shortly.



Step 3: Scan the CETs to generate a table

At this point, we have a CET and an annotated Python script.
The CET is a durable copy of a previous execution.
Flor uses the annotated Python script iris_h.py to identify the values you want to fetch from the CET.
Then, Flor scans the CET to extract the values and transform them into a relational table.

flor etl iris_demo iris_h.py





iris_demo is the name of the experiment and iris_h.py is the path to the annotated file.

When the program finishes, you can view the results in iris_demo.csv.



License

Flor is Licensed under the Apache V2 License [https://www.apache.org/licenses/LICENSE-2.0].


Installation


	Install Flor from Pip

	Uninstall Flor






Help


	Contact









            

          

      

      

    

  

    
      
          
            
  Flor requires Python 3.6 or higher.
Flor requires Anaconda.


Install Flor from Pip


	Run the command: pip install pyflor


	Run the command, following the instructions as prompted: pyflor_install






Uninstall Flor


	Run the command, pyflor_uninstall







            

          

      

      

    

  

    
      
          
            
  
Contact

Flor is developed and maintained by the RISE Lab [https://rise.cs.berkeley.edu/].

For bug reports and feature requests, please open GitHub Issues [https://github.com/ucbrise/flor/issues].
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About

Flor should facilitate the development of auditable, reproducible, justifiable, and reusable data science workflows. Is the data scientist building the right thing? We want to encourage discipline and best practices in ML workflow development by making dependencies explicit, while improving the productivity of adopters by automating multiple runs of the workflow under different configurations.


Features


	Simple and Expressive Object Model:  The Flor object model consists only of Actions, Artifacts, and Literals. These are connected to form dataflow graphs.


	Data-Centric Workflows: Machine learning applications have data dependencies that obscure traditional abstraction boundaries. So, the data “gets everywhere”: in the models, and the applications that consume them. It makes sense to think about the data carefully and specifically. In Flor, data is a first-class citizen.


	Artifact Versioning: Flor uses git to automatically version every Artifact (data, code, etc.) and Literal that is in a Flor workflow.


	Artifact Contextualization: Flor uses Ground [http://www.ground-context.org/] to store data about the context of Artifacts: their relationships, their lineage. Ground and git are complementary services used by Flor. Together, they enable experiment reproduction and replication.


	Parallel Multi-Trial Experiments: Flor should enable data scientists to try more ideas quickly. For this, we need to enhance speed of execution. We leverage parallel execution systems such as Ray [https://github.com/ray-project/ray] to execute multiple trials in parallel.






Contributors

Flor is developed and maintained by the RISE [https://rise.cs.berkeley.edu/] Lab:



	Rolando Garcia


	Vikram Sreekanti


	Daniel Crankshaw


	Neeraja Yadwadkar


	Sona Jeswani


	Eric Liu


	Malhar Patel


	Joseph Gonzalez


	Joseph Hellerstein









License

Flor is Licensed under the Apache V2 License [https://www.apache.org/licenses/LICENSE-2.0].





            

          

      

      

    

  

    
      
          
            
  
The Flor API


	
class flor.log(name: str, value)

	Record & Replay grow the kvs written to .replay.json








            

          

      

      

    

  

    
      
          
            
  
Flor Examples


Iterative Fibonacci Sequence

Here we have an iterative fibonacci function that calculates idx number of fibonacci numbers.

Let’s modify this so that flor logging can work. After importing flor, we add the @flor.track tag before the function and use log.param() and log.metric() to specify parameters and outputs of interest.

The log generated by running this fibonacci code can be found in the examples directory of flor’s repo: https://github.com/ucbrise/flor/tree/master/examples/fib.
The log is named clean_fib_log.json.



Random Forest Classifier

Now let’s take a look at the code below, which is representative of a real life data science workflow. The program takes in movie reviews from (INSERT NAME HERE) as data.json, where the data is formatted as {'text': {'0': <text>, '1': <text>, '2': <text>, ...}, 'rating': {'0': <int>, '1':<int>, '2':<int>, ...}}. Flor related additions are highlighted with ########.





            

          

      

      

    

  

    
      
          
            
  
Context Free Grammar of the Log

Below is the Context Free Grammar for the log files emitted by Flor.

ROOT -> BLOCK_NODE
        | ROOT, BLOCK_NODE

BLOCK_NODE -> {
    "block_type" : "(function_body FUNC_NAME
                    | loop_body)",
    ("consumes_from" : [ FUNC_NAME_SEQ ], )?
    "log_sequence" : LOG_SEQUENCE
}

FUNC_NAME -> STR
FUNC_NAME_SEQ -> FUNC_NAME
                 | FUNC_NAME_SEQ, FUNC_NAME

LOG_SEQUENCE -> [ LOG_SEQUENCE_MEMBERS ]

LOG_SEQUENCE_MEMBERS -> LOG_RECORD
                        | BLOCK_NODE
                        | LOG_SEQUENCE_MEMBERS, LOG_RECORD
                        | LOG_SEQUENCE_MEMBERS, BLOCK_NODE

LOG_RECORD -> {
    "assignee" : STR,
    "caller" : STR,
    "from_arg": BOOL,
    "in_execution" : FUNC_NAME,
    "in_file" : PATH,
    "instruction_no" : INT,
    "keyword_name" : STR,
    "pos": INT,
    "runtime_value" : STR_SERIALIZABLE,
    "typ" : STR,
    "value" : STR
}

STR_SERIALIZABLE -> STR





Every Flor log has exactly one ROOT node as the root.

We call a value string serializable if and only if:

x == eval(str(x))





This means, for example, that a Pandas Dataframe is not string-serializable.

Documentation for the elements in LOG_RECORD to follow…




            

          

      

      

    

  

    
      
          
            
  
Tutorial

Flor is a context-centric logger and automatic version controller to help you create model training pipelines.
Context is enriched metadata: it is also the version history and lineage of data (or other artifacts or entities
in the Machine Learning lifecycle). Flor leverages git for version control and relies on program analysis to establish
the lineage of metrics or output artifacts from data, code, and parameters.
You may, for example, want to know whether a new parameterization of the model improved accuracy;
alternatively, you may ask which earlier version produced the best results, and want to restore that previous
state for further exploration.

Flor uses the Ground context meta-model (Figure 2 [http://cidrdb.org/cidr2017/papers/p111-hellerstein-cidr17.pdf]).
You can read more about the motivation for Flor in our workshop paper [https://rlnsanz.github.io/dat/Flor_CMI_18_CameraReady.pdf].


Introduction

Below is a toy script we’ll use to introduce several key Flor concepts:

import numpy as np
from sklearn.metrics import mean_squared_error

# mock: get the test data
y_actual = np.array([
    0.37454012, 0.95071431,
    0.73199394, 0.59865848,
    0.15601864])

for seed in range(50):
    # mock: fit the model
    np.random.seed(seed)

    # mock: make a prediction
    y_pred = np.random.rand(len(y_actual))

    # mock: measure the loss
    mse = mean_squared_error(y_actual, y_pred)

    print("seed: {}, mse: {}".format(seed, mse))





We can think of the numpy random number generator as a model parameterized by the seed –
for simplicity of exposition, we defer the discussion of how to use data.
We start by “fitting” the random number generator to the seed-parameter, and then make a “prediction”
with the same dimensions as the y_actual vector. Finally, we compare y_pred and y_actual to get a measure of loss.
If we were doing optimization and tuning, we would care about which parameterization minimized the mean squared error.

First, we’ll do the least amount of work needed for Flor tracking:

import numpy as np
from sklearn.metrics import mean_squared_error

##### IMPORT ####
import flor
log = flor.log
#################

y_actual = np.array([
    0.37454012, 0.95071431,
    0.73199394, 0.59865848,
    0.15601864])

### Put the code in a decorated function ###
@flor.track
def fit_and_score_model():
    for seed in range(50):
        np.random.seed(seed)
        y_pred = np.random.rand(len(y_actual))
        mse = mean_squared_error(y_actual, y_pred)
        print("seed: {}, mse: {}".format(seed, mse))

### Invoke the function from within a Flor Context ###
with flor.Context('introduction'):
    fit_and_score_model()





We’ve imported Flor and moved the code we want to track into a flor-decorated function.
The code we want to be tracked has to be in a function body because Python is an interpreted language,
but Flor does program analysis by walking a parse-tree (which is compiled rather than interpreted).
You can ignore this detail, but you should remember that any code you want Flor to track should be in
a Flor decorated function.

Another detail you will notice as unusual is that instead of simply invoking fit_and_score_model(),
the function was invoked from within a (named) Flor context. This is because the identity of experiments
or executions is important. Your experiment may have the same identity even if you change the filename of the files
that contain it, run the experiment in a different computer or repository, or make even more drastic changes.
We rely on you to tell us what experiment you’re running, rather than trying to infer this ourselves.
This gives you the flexibility to make any change you want, so long as you keep the name of the experiment the same,
and to have multiple experiments in the same directory
or repository — more on this later. The important takeaway is that every Flor experiment must have a Flor context
and the name of the context must be unique in your scope (for now, your personal computer).
Although the code that runs inside Flor decorated functions and contexts is tracked, it has no additional restrictions:
you run vanilla Python.

When you run the code above, you see the same results as before, but also, Flor automatically
versions your code in a git repository and writes a JSON file with the name
introduction_log.json to the current directory. Flor will co-mingle (mix) your commits with its own commits.
If the code you are running is already in a repository, it will use the same repository. If the code is in a directory
that is not in a repository (or is a subdirectory of a repository), Flor will initialize a git repository and show
you a prompt. We’ll explain versioning in more detail later.

The JSON file looks something like this:

{
    "block_type": "function_body :: fit_and_score_model",
    "log_sequence": [
        {
            "block_type": "loop_body"
        },
        ...
    ]
}





We can learn little from this particular JSON file other than the name of the function that was invoked,
and the fact that the function contains a loop that ran 50 times. Let’s change that, and do some real tracking:

import numpy as np
from sklearn.metrics import mean_squared_error

import flor
log = flor.log

y_actual = np.array([
    0.37454012, 0.95071431,
    0.73199394, 0.59865848,
    0.15601864])

@flor.track
def fit_and_score_model():
    for seed in range(50):
        # We log the seed parameter
        np.random.seed(log.param(seed))
        y_pred = np.random.rand(len(y_actual))
        # We log the mse metric
        mse = log.metric(mean_squared_error(y_actual, y_pred))

with flor.Context('introduction'):
    fit_and_score_model()





We’ve added two log statements. One to log the seed parameter and the other to log the mse metric.
This change produces the following log:

{
    "block_type": "function_body :: fit_and_score_model",
    "log_sequence": [
        {
            "block_type": "loop_body",
            "log_sequence": [
                {
                    "assignee": null,
                    "caller": "np.random.seed",
                    "from_arg": false,
                    "in_execution": "fit_and_score_model",
                    "in_file": "/Users/rogarcia/Desktop/sandbox/randy.py",
                    "instruction_no": 16,
                    "keyword_name": null,
                    "pos": 0,
                    "runtime_value": 0,
                    "typ": "param",
                    "value": "seed"
                },
                {
                    "assignee": "mse",
                    "caller": null,
                    "from_arg": false,
                    "in_execution": "fit_and_score_model",
                    "in_file": "/Users/rogarcia/Desktop/sandbox/randy.py",
                    "instruction_no": 19,
                    "keyword_name": null,
                    "pos": null,
                    "runtime_value": 0.03541292928458963,
                    "typ": "metric",
                    "value": "mean_squared_error(y_actual, y_pred)"
                }
            ]
        },
        ...
    ]
}





From the log we learn more information than from the print statement, we’re working on making these logs
queryable. For help interpreting the logs, please read its documentation [https://flor.readthedocs.io/en/latest/log_cfg.html].

RECAP:


	Any code you want Flor to track should be in a Flor decorated function


	Every Flor experiment must have a Flor context, the name of the context must be unique in your scope, and the top-level flor decorated function must be invoked from a Flor context


	Wrap any value you want to track in a log.param() or log.metric()


	Flor automatically versions the code and results of your execution


	Flor produces rich JSON logs, and writes them to the same directory






Exercise

Using what you’ve learned, try to wrap the following code in Flor. Track the relevant parameters and metrics:

from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
X_tr, X_te, y_tr, y_te = train_test_split(iris.data, iris.target,
                                          test_size=0.15,
                                          random_state=430)

clf = svm.SVC(gamma=0.001, C=100.0)
clf.fit(X_tr, y_tr)

score = clf.score(X_te, y_te)







More Examples

1. BASIC [https://github.com/ucbrise/flor/tree/master/examples/logger]: See basic.py. This example shows you how to track the data you read
and the models you serialize using log.read() and log.write(). Additionally, it separates a model-training pipeline into multiple functions,
and demonstrates the extent to which Flor can infer dataflow and lineage in the logs [https://github.com/ucbrise/flor/blob/master/examples/logger/basic_log.json].


	PYTORCH [https://github.com/ucbrise/flor/tree/master/examples/pytorch]: These examples show you how PyTorch code can be wrapped in Flor.
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